

STUDY OF QUANTITATIVENESS IN RUSSIAN LINGUISTICS

Хамраева Углоной Авазовна

Преподаватель кафедры русского языка и литературы

Денсауского института предпринимательства и педагогики.

ABSTRACT:

This article discusses some real properties of reality itself. The content of the category of quantity has been studied not only by philosophy, but also by mathematics and logic. The study of the category of quantity is one of the main problems of mathematics, as well as its logical foundations.

Keywords: property, teaching, number, development, concept, categories.

Introduction

In the history of mathematics, two ideas of the concept of number have been developed. The first, the logical one, is that number reflects some real properties of reality itself. It was culminated in the Frege-Russell doctrine, according to which number is a property common to all classes between the members of which there is one one-to-one correspondence. The second idea is the ordinal conception of number, which holds that a number as such acquires its meaning only insofar as it occupies a certain place in a particular system. Both of these numbers, the quantitative and the ordinal, represent the objective properties of the discontinuous quantity. Data on the history of the development of languages help to reconstruct the ways in which these properties of discrete quantity are cognized. Its results, for example, are reflected in the formation of cardinal and ordinal numbers in the language, respectively. It is known that ordinal numbers appear in language later than cardinal numbers, and therefore it can be concluded that the establishment of the relations of numbers and the place of each of them in the system (in the process of human cognition) in any case cannot precede the establishment of number as a general property of equivalent sets. The Pythagorean theory of numbers should be remembered. According to tradition, Pythagoras did not leave a written exposition of his teaching, apparently he did not write down his thoughts, so Philolaus is considered to be the first to present an exposition of the Pythagorean doctrine in writing. The ideas of the early Pythagoreans are known only from the testimony of Plato and Aristotle, and from the few fragments of Philolaus, which are authentic documents. Aristotle asserted: "Pythagoras recognized mathematical principles as the principles of all things" [1, p. 14]. The main philosophical idea of Pythagoras of Samos was the philosophy of number. In the beginning, among the Pythagoreans, numbers were identified with the things themselves, and were therefore an ordinary numerical form. At the same time, the numerical image meant not only physical things, but also everything that exists, for example, abstract concepts (good, evil) or active agent (virtue). Later, these concepts began to be interpreted as essences,

principles, and causes of things. Actively engaged in mathematics, the Pythagoreans believed that numbers were the beginning of everything, because it was in numbers that they saw many similarities with what exists and happens in the world around them, and numbers contain the primary elements of all mathematical principles. At first, the Pythagoreans understood number exclusively from the standpoint of physics and gave the following definition of numbers: numbers are the beginnings of all things, i.e., special "extended" things from which the objects of the sensible world are composed. Pythagoras said that everything is born from number, but not simply from number, but according to number, since in number there is a first order, according to which something first, second, etc., is established in numerical things. According to Pythagoras, numbers are prior to all nature, the elements of numbers are the elements of all things, and that the whole universe is harmony and number. The logical basis of this concept is the geometric understanding of numbers: one is a point, two points define a straight line, and three points are a plane. This is where the concepts of triangles, squares, and rectangles came from. Pythagoras divided all numbers into two groups, the first being even and the second being odd, while determining with surprising precision the properties of the numbers of each group. In turn, the Pythagoreans divided even numbers into three subgroups: 1) even-even numbers, 2) even-odd numbers, and 3) odd-odd numbers. As for even numbers, the Pythagoreans divide them into three more subgroups: (1) superperfect, (2) imperfect, and (3) perfect. The members of the Pythagorean League believed that perfect numbers were the mean between excess and deficiency, that these numbers were rare in nature, and that they were produced only by perfect order. Pythagoras divided odd numbers into three types: (1) non-composite, (2) composite, and (3) non-composite-composite. The science of numbers occupies one of the main places in the system of worldview, i.e. in fact, it turns out that mathematics is declared to be philosophy. The Pythagoreans ascribed a peculiar significance to numbers in the field of knowledge. According to Philolaus, the nature of number is cognitive, "preliminary" and "instructive" for everyone in everything incomprehensible and unknown. For none of these things would be clear to anyone, either in their relation to themselves or in their relation to another, if there were no number. Thus number is the basis of the knowability of all things. Everything that is known has a number, because without it it is impossible to understand or know anything. The complicated and long history of Pythagoreanism raises many unresolved questions for researchers. Nevertheless, it seems possible to formulate some well-founded assessments of the meaning and theoretical content of the Pythagorean teachings. The main idea of Pythagoreanism is based on three components: the first is religious-mythological-magical; the second is scientific, related to the development of mathematics; and the third is philosophical. The last aspect is the Pythagoreans' desire to find the origin of all things, with the help of which to explain the world, man and his place in the cosmos. In the course of time, however, the main material tendency gave way to an idealistic one, which was based on the most important discovery, which is connected with the development of mathematical knowledge, and consists in the discovery of the possibility

of revealing ordered and numerically expressible quantitative relations of all things. Pythagoras and his disciples discovered and explained the numerical regularity of existence (the extended world of bodies, the mathematical laws of the motion of celestial bodies, the laws of musical harmony, the law of the "beautiful structure" of the human body, and so on). Such discoveries are a triumph of the human mind. But the main achievement of Pythagoras was that he led humanity out of the labyrinths of myth-making and God-seeking to the heights of exact knowledge. Pythagoras seems to have been the first to show mankind the possibilities of abstract knowledge. He proved that it is only the mind, not the senses, that brings true knowledge to man. It was because of his desire to know the truth that he recommended that his disciples and followers move from the study of physical objects to the study of abstract mathematical objects. Thus, with the help of mathematics, it becomes possible to know the world, and after such a science as mathematics, philosophy also follows, since it is nothing but the extension of accumulated special mathematical knowledge to the field of world view. This is how the famous Pythagorean thesis appears: "Everything is a number." The members of the Pythagorean league believed that it was possible to achieve purification and union with the deity by means of mathematics, since mathematics was an integral part of their religion. They believed that God is a unity and that the world is a multiplicity and is made up of opposites. That which brings opposites into unity and unites everything into a cosmos is harmony. Harmony is divine and consists of numerical relationships. Whoever fully learns this divine numerical harmony will himself become divine and immortal. An analysis of the philosophical concept of the Pythagoreans allows us to conclude that number is the primary cause of all things. They believed that everything that surrounds us, everything that happens, can be reduced to a number and measured by a number. They advocated the cognition of the world through numbers, considering mathematics to be a transition from sensual to ideal cognition. Proponents and followers of Pythagoras considered the unit to be the smallest particle of everything. They tried to distinguish "proto-categories" that showed the dialectical unity of the world (even-odd, light-dark, straight-crooked, right-left, masculine-feminine, and so on). Whereas in philosophical ontology quantity does not depend on man, in epistemology it does. Let us turn to the question of the initial stage of the formation of the category of quantity as a category of abstract, generalized thinking. Such a stage is the one in which only the "equal number" or "equal power" of concrete sets of objects was established in the event that the objects that make up these sets were brought into one-to-one correspondence. Such a stage in the development of the category of quantity took place among primitive peoples. Many researchers have noticed that primitive people had numerals only within the first ten numbers, while some had only the numerals one and two. Thus, when primitive peoples dealt with concrete sets consisting of a greater number of objects than found its designation in the numerals they possessed, they really only established the "equity" of such sets. Thus, it could be assumed that the nouns of this lexical-grammatical group would be outside the grammatical category of number. Indeed, in various languages of the world, and in

particular in the Indo-European languages, most of these nouns do not have their own pair in number (i.e., do not change in numbers). Therefore, they are either the words singularia tantum (in Russian: honey, milk, beetroot, wine, vodka, iron, cereals, oil, etc.; in Spanish: este - 'east', oeste - 'west', salud - 'health'), or the words pluralia tantum (in Russian: scales, gates, rakes, firewood, yeast, perfume, pasta, wallpaper, ink, etc.; in Spanish: tenezas - 'ticks', andas - 'stretcher', bridás - 'reins'). In this regard, O. Jespersen makes an important remark: "Where the singular is used in one language, the plural may be used in another" [3, p. 230]. Indeed, the collective noun singularia tantum - in the Russian language voronye (only singular) - in Spanish corresponds to the noun bandada de cuervos (with plural -s); The words pluralia tantum with the meaning of "the names of objects consisting of two or more parts" - in the Russian language Libra (only plural) - in Spanish balanza (has the form of both singular and plural parts, gates (only plural) - puerta (has the form of singular and plural), clock (only plural form) - reloj (has the form of singular and plural). These differences in the grammatical forms of nouns demonstrate the discrepancy between the internal form of languages, different linguistic "comprehension" of the same objects of the surrounding reality. Thus, the logical category of quantity embraces the most general, basic concepts and essential definitions of the object of cognition. The content of the category of quantity has been studied not only in philosophy, but also in logic, mathematics, and linguistics. The category of quantity in language reflects the development of the logical, mental category of quantity and has passed through several stages in its development: from the concrete to the abstract, from the simple to the complex.

References

1. Aristotle. Metaphysics. Op. in 4 vols. — Moscow, Mysl Publ., 1975.
2. Baudouin de Kurtene I.A. Quantitativeness in Language Thinking // Selected Works on General Linguistics. T. 2. — M.: Izd. USSR Academy of Sciences, 1963. — S. 311—324.
3. Espersen O. Filosofiya grammatiki [Philosophy of grammar]. by V.V. Passek and S.P. Safronova; Ed. and with prev. Prof. B.A. Ilyisha. Moscow, Foreign Literature Publishing House, 1958.
4. Efimov V.I. Opredelenie kachestva i quantity kak sistemy definitsii [Definitions of quality and quantity as a system of definitions]. - Rostovna-Don: Rostov University, 1973.
5. Ilyin V.V. Ontologicheskie i gnoseologicheskie funktsii kategorii kachestva i quantity [Ontological and gnoseological functions of quality and quantity categories]. Moscow, Vysshaya shkola Publ., 1972.
6. Shadieva D. K., Mukhiddinova G. N. Negative Trends and Threats to the Development of the Russian Language in the Media. – 2021. – №. 4. P. 153-156.
7. Shadieva D. K. IZUCHENIE HARAKTERA IZMENENIYA NORMOV RUSSKOGO YAZYKA [STUDY OF THE NATURE OF CHANGES IN THE NORMS OF THE RUSSIAN LANGUAGE]. – 2022. – №. 8 (89). P. 27-32.