

## **DISTRIBUTION, HARMFULNESS, BIOECOLOGICAL CHARACTERISTICS OF DECORATIVE APPLE TREE BARK BEETLE**

**(*Scolytus rugulosus* Muell)**

Nafasov Zafar Nurmahmadovich,

Doctor of Agricultural Sciences, Senior Researcher, Head of the Laboratory of the Scientific Research Institute Quarantine and Plant Protection, 111215, Tashkent, Uzbekistan,  
<https://orcid.org/0000-0001-9569-1120>, email: zafar.nafasov85@gmail.com

Allayarov Nodirjon Jo'rayevich,

Senior Researcher of the Scientific Research Institute Quarantine and Plant Protection, 111215, Tashkent, Uzbekistan

Mansur Shodikulovich Muminov,

Junior Researcher of the Scientific Research Institute Quarantine and Plant Protection, 111215, Tashkent, Uzbekistan

Xoshimova Dilnoza Karimjonovna,

Doctoral Student (PhD) of the Scientific Research Institute Quarantine and Plant Protection, 111215, Tashkent, Uzbekistan, momugim@gmail.com

Arslanova Nozima Dilmurodovna

Laborant of the Scientific Research Institute Quarantine and Plant Protection, 111215, Tashkent, Uzbekistan

### **Abstract**

The distribution, harmfulness and bioecological features of the pest decorative apple tree bark beetle (*Scolytus Rugulosus* Muell.), causing damage to ornamental pears and ornamental apple trees grown in the city of Tashkent, are presented.

**Keywords:** Ornamental trees, larva, pest, decorative apple tree bark beetle, bioecology.

### **Introduction**

At a time when the world is experiencing global climate change, and when our government is paying great attention to ornamental plants in cities and other residential areas, it is necessary to conduct in-depth scientific research on the above issues and develop a set of effective countermeasures. In the world, pests of ornamental trees are widespread in China, India, USA, Mexico, Brazil, Italy, Spain, Hungary, Russia, Ukraine, and Central Asian countries, causing great damage. Particular attention is paid to landscaping, landscaping and forestry, taking into account the improvement of nature, increasing natural biodiversity, improving the sanitary condition of residential areas and the environmental situation.

Today, the study of the species composition, bioecological characteristics, distribution and spread of pests of ornamental trees in the CIS countries and leading countries of the

world, the USA, Germany, Italy, France, China, pays great attention to the study of harm and the development of effective methods to combat them. Carrying out current scientific research is one of the urgent tasks of our time. For this reason, it is necessary to study the characteristics of the bioecological development of pests, their distribution, harmfulness and measures to combat them, as well as the development of a system of environmentally safe and effective measures to combat these pests.

In recent years, ornamental trees have been widely used for decorating and landscaping city and rural avenues. In the conditions of Uzbekistan, the reasons for the sharp increase in the number of these pests, the bioecological characteristics of the pests, the distribution area, the level of harmfulness and measures to combat it have not been sufficiently studied.

In 2022-2023, in all districts of the city of Tashkent, in areas caring for ornamental pears and ornamental apple trees brought from abroad, as a result of monitoring studies conducted to study pests, cases of severe bark infestation were detected. Damaged and dried tree seedlings in the laboratory of the "Combating Pests of Landscape and Forest Trees" of the Research Institute of Quarantine and Plant Protection were recognized as pests when examined on sections. In order to study the bioecological characteristics and harmfulness of this pest, laboratory collections of larvae and adults were prepared in the laboratory.

**Decorative apple tree bark beetle** (*Scolytus Rugulosus* Muell.). Distributed in the North Caucasus (Stavropol, Maykop, Armavir) and in the Crimea, the Caucasus, Western Europe, Asia Minor and North America.

**Description of development stages.** After spawning, it lays eggs in small holes in the bark for 20 days. Usually the number of eggs laid does not exceed 30, but some females lay up to 100 eggs. After laying eggs, the female penetrates a hole in the bark and closes the mouth of the burrow to prevent other insects from entering, and dies there. The body of the larvae is white, the head is brown. The length of the adult larva reaches 2.5 mm. The larvae gnaw long paths between the bark and the pulp layer. The larvae pupate in early July; the pupation period is 10-15 days.



**Pic.1. Pupa, adult and larvae of decorative apple tree bark beetle.**

At the end of July - beginning of August, the beetles appear and begin to infect other trees. These beetles also begin to lay eggs, and the hatched larvae, after a full meal, go to the sleep. The decorative apple tree bark beetle reproduces once, and in the Crimea - twice.



**Pic.2. The damage of decorative apple tree bark beetle.**

The bark beetle mainly damages trees weakened by cold or hot weather, with mechanically damaged bark.

#### **Control measures:**

**Agrotechnical control measures:** cutting off dead branches, bark and trees, preventing their reproduction, preventing spread, timely pruning of infected trees and branches, fertilizing trees, softening the base, irrigation etc.

**Chemical control:** during the summer of beetles, when mass reproduction of the pest is observed, it is advisable to use chemicals, such as El Toro, 25% s.c., Talstar, 10% e.c., Desis, 2.5% e.c., Imitrin, 20% em.c., Aktara, 25% s.d.g.

In conclusion, it should be noted that if work is not carried out in a timely and high-quality manner to combat the study of the bioecological characteristics of the decorative apple tree bark beetle, this can lead to the death of many ornamental trees.

#### **REFERENCES**

1. Мирзиёев Ш.М. “Республикада кўкарамзорлаштириш ишларини жадаллаштириш, дарахтлар муҳофазасини янада самарали ташкил этиш чора-тадбирлари тўғрисида” Ўзбекистон Республикаси Президенти Фармони. ПФ-46-сон. 2021 йил 30 декабрь.
2. Мирзиёев Ш.М. Ўзбекистон Республикаси Вазирлар Махкамасининг “2030 – йилгача бўлган даврда барқарор ривожланиш соҳасидаги миллий мақсад ва вазифаларни амалга ошириш чора – тадбирлари тўғрисида”ги 2018 йил 20 октябрь 841 - сонли қарори.
3. Нафасов З.Н. Применение препаратов против вредителей хвойных культур в Республике Узбекистан. Научное обеспечение устойчивого развития

агропромышленного комплекса. Сборник материалов Международной научно-практической конференции посвященной памяти академика РАН В.П. Зволинского и 30-летию создания ФГБНУ «ПАФНЦ РАН» с. Соленое Займище. – 2021. – С.343 – 345.

4. Нафасов З.Н., Сулаймонов О.А., Мамбетназаров А.Б., Аллаяров Н.Ж. Манзарали дарахтларнинг заарли организмларига қарши кураш. бўйича қўлланма, тасвир нашрёти уйи. - Тошкент, 2022. 100 б. ISBN: 97899437863-7-0.
5. Нафасов З.Н., Сулаймонов О.А., Мамбетназаров А.Б., Аллаяров Н.Ж. Игна баргли дарахтларнинг заарли организмларига қарши кураш. бўйича қўлланма, тасвир нашрёти уйи. - Тошкент, 2022. - 76 б. ISBN: 97899437865-9-2.
6. Nafasov Z.N., Khujaev O.T., Nazarova O.J. Integrated Management of Hawthorn Diseases: Development, Harm, and Control Measures. Central asian journal of theoretical and applied science. Volume:05 Issue: 03| May 2024 ISSN: 2660-5317. – P.143-152.
7. Nafasov Z.N., Sulaymonov O.A., Allayarov N.J., Muminov M.Sh., Sulaymonova N.M., Suyunova G. Do'lana (Crataegus) ning zararli organizmlariga qarshi uyg'unlashgan kurash tizimi (IPM) bo'yicha ilmiy-amaliy qo'llanma. Onlayin ilmiy – amaliy qo'llanma. – Toshkent, 2022. – 68 b.
8. Nafasov Z.N., Allayarov N.J., Muminov M.Sh. Pests of ornamental trees of the legumine family (Leguminosae) in the republic of Uzbekistan. JournalNX- A Multidisciplinary Peer Reviewed Journal ISSN No: 2581 - 4230 Volume 10, ISSUE 5, May. – 2024. M.S.India. June-2022. – P.31-34.
9. Yakhyaev KH.K., Nafasov Z.N., Allayarov N.J., Muminov M.Sh. Possibilities of biological protection of forests against harmful organisms. British Journal of Global Ecology and Sustainable Development. Volume-14, March., 2023. ISSN (E): 2754-9291. – P.14-21.
10. <https://t.me/ecologuz>.
11. <https://t.me/ecologuz>.