
**GAS WASTE: COMPOSITION, ECOLOGICAL AND TOXIC HARM,
CLEANING METHODS AND TECHNOLOGY FOR WORKING WITH
HAZARDOUS WASTE**

Dalerjon Hisomiddinov Shahobidin zoda

Kokand State University, Faculty of Exact Sciences and Engineering,

Chemical Technology Department, 3rd Year Student

Email: dalerhisomiddinov11@gmail.com

Abstract

This article examines the chemical composition, ecological, and toxic impacts of gaseous wastes released by industrial enterprises, transportation, agriculture, and municipal services. It emphasizes the significance of harmful gases such as CO, CO₂, NO_x, SO₂, NH₃, VOCs, and other toxic compounds, which contribute to the greenhouse effect, ozone layer depletion, acid precipitation, and smog. The study is based on literature analysis and data collected through gas chromatography, infrared spectroscopy, and other analytical methods. Effective treatment technologies, including mechanical, chemical, adsorption, catalytic, and biological methods, are analyzed and compared. Additionally, modern hazardous waste management technologies, such as thermal incineration, neutralization, hermetic packaging, and biotechnological approaches, are discussed. The results underline the need for integrated and sustainable approaches to minimize atmospheric pollution and protect human health. The article highlights the role of innovation, international cooperation, and legislative improvements in achieving effective gaseous waste management.

Keywords: Gaseous waste, air pollution, ecological impact, toxic emissions, treatment technologies, hazardous waste management, sustainable development, environmental protection.

Introduction

Nowadays, with the rapid development of the industrial revolution and urbanization, the problem of environmental pollution is becoming increasingly urgent. In particular, gaseous emissions have a negative impact on the quality of the atmosphere, causing significant damage to ecological systems and human health. Gaseous emissions generated by industrial enterprises, vehicles, agriculture, and municipal services contain harmful substances such as carbon monoxide (CO), carbon dioxide (CO₂), nitrogen oxides (NO_x), sulfur dioxide (SO₂), ammonia (NH₃), and volatile organic compounds (VOC). High concentrations of these substances lead to the greenhouse effect, ozone layer depletion, acid precipitation, and smog. Therefore, the treatment and management of gaseous emissions is an integral part of modern environmental policy and industrial technology.

The purpose of the article

This article aims to determine the chemical composition of gaseous wastes, analyze their ecological and toxic effects, study effective treatment methods, and examine technologies for handling hazardous wastes. These issues play an important role in environmental protection and sustainable development.

Methods

The article was written by analyzing scientific literature, industry reports, and recent studies. Data were collected on gas chromatography, infrared spectroscopy, mass spectrometry, and other analytical methods to determine the chemical composition of gaseous wastes. To assess their environmental impact, toxicological parameters were studied based on international standards (e.g., WHO and EPA recommendations).

Also, for the analysis of treatment technologies, the main technologies such as physicochemical methods, biological treatment, catalytic oxidation, adsorption, and scrubbers were considered. Within the framework of hazardous waste management technologies, thermal incineration, neutralization, hermetic packaging, biotechnological approaches, and methods for safe storage of waste were analyzed. The article analyzes the effectiveness and practical application of existing methods based on scientific articles and industrial examples.

Results

1. Chemical composition of gaseous waste

The composition of gaseous waste is complex. It depends on the industry, the fuel type, and discharge conditions. Major components include:

Carbon monoxide (CO) is produced by incomplete combustion and is toxic at high concentrations.

Carbon dioxide (CO₂) is a major greenhouse gas that increases atmospheric heat and causes climate change.

Nitrogen oxides (NO_x) - found mainly in transport and industrial emissions- are involved in the formation of acid precipitation and tropospheric ozone.

Sulfur dioxide (SO₂) - produced by the combustion of coal and petroleum fuels, mainly causes acid rain.

Ammonia (NH₃) - found in agricultural and industrial waste- is harmful to plants and human health.

Volatile organic compounds (VOCs) are gases produced in the organic chemical industry, fuel combustion, and other processes that contribute to ozone formation.

Toxic gases (HCl, HF, HCN, etc.) are produced in special industrial enterprises and have high toxicity.

2. Ecological and toxic effects

Gaseous emissions have a serious negative impact on the environment. They contribute to the greenhouse effect, accelerating global climate change. Nitrogen oxides and sulfur

dioxide cause acid rain, which leads to pollution of soil and water resources and the loss of flora and fauna. Also, the destruction of the ozone layer leads to an increase in ultraviolet radiation, which leads to an increase in skin cancer and eye diseases. When exposed to the human body, gaseous emissions damage the respiratory tract, cardiovascular system, and nervous system. For example, carbon monoxide reduces the transport of oxygen in the blood, which can cause heart attacks and asphyxiation. Nitrogen oxides aggravate asthma and allergic diseases, while volatile organic compounds increase the risk of cancer. High concentrations of these gases cause serious diseases with long-term exposure.

3. Methods for cleaning gaseous waste

The methods used to treat gaseous waste depend largely on the composition of the waste and its concentration. The main types are:

Mechanical methods include filters (devices that physically remove particles) and electrostatic dust collectors (machines that use electrical charges to capture dust) to capture dust.

Chemical methods: neutralization of gases and decontamination using reagents (e.g., reactions with acids and bases).

Adsorption: the absorption of harmful gases using activated carbon and other sorbents.

Catalytic oxidation: the conversion of harmful gases into neutral substances at relatively low temperatures.

Scrubbers: cleaning gases by washing them with liquid.

Biological methods: achieving the decomposition of organic gases using microorganisms.

These methods are often used together, as each has its own advantages and limitations.

4. Hazardous waste management technology

Hazardous waste management strictly adheres to safety and environmental protection requirements. The following technologies are used for this:

- Hermetic packaging and storage in containers: cutting off contact with the atmosphere during transportation and storage of waste.
- Neutralization reactions: the removal of waste from toxicity using chemical methods.
- Thermal incineration: burning waste at high temperatures to ensure the decomposition of harmful substances.
- Biotechnological approaches: ensuring the natural decomposition of waste using biological substances.
- Monitoring and control systems: to continuously monitor waste and ensure its safe management.

Discussion

Creating an effective system for managing gaseous waste is an important factor not only in environmental sustainability but also in protecting human health. Improving modern industrial methods and introducing waste recycling technologies will help reduce environmental pollution. Green technologies and innovations to reduce carbon emissions are also being developed. Life cycle assessment is an effective tool for assessing the environmental impact of products and technologies, which allows for economically and environmentally balanced decisions. Currently, many countries are joining international agreements to achieve waste reduction, recycling, and carbon neutrality goals. Scientific research and technological solutions will play an important role in this process.

Conclusion

Gaseous wastes are one of the main environmental problems associated with the development of industry and the expansion of human activity. Determining the composition of these wastes, a detailed study of their ecological and toxic effects, as well as the development and implementation of effective treatment and management technologies, are important factors in protecting the environment and human health. Harmful substances contained in gaseous wastes pollute the atmosphere, leading to climate change, increased health problems, and the destruction of natural ecosystems. Modern and integrated approaches are effective tools for reducing waste and eliminating its harmful effects. Such approaches include optimizing industrial processes, organizing waste recycling and reuse, as well as developing environmentally friendly technologies. Thus, waste management systems not only reduce the harmful effects of waste on the environment but also serve to save resources and increase economic efficiency. By continuing scientific research and developing new technologies, it is possible to increase the efficiency of waste processing and reduce its environmental risks. In particular, the introduction of environmentally friendly and energy-saving treatment methods is consistent with the concept of sustainable development. This will ensure a healthy and safe environment for future generations. It is also necessary to create effective mechanisms for managing gaseous waste through interstate cooperation, international agreements, and improved legislation. One of the important tasks is to educate and raise the environmental awareness of the population, and to encourage industrial enterprises to introduce environmentally friendly technologies. As a result, effective management of gaseous waste is important not only for solving environmental problems but also for economic development and improving human health. In this regard, scientific research and technological innovations should be applied on a wider scale.

References

1. Romanov, NA (2019). Atmospheric pollution . Moscow: Chemistry.
2. Woodard & Curran Inc. (n.d.). Industrial Waste Treatment Handbook .
3. Doble, M., & Rollins, K. Green Chemistry and Engineering .
4. Karimov, A., & Sattorov, T. (2023). Fundamentals of Ecological Security . Tashkent.
5. Ministry of Ecology of the Republic of Uzbekistan. (2024). Recycling and waste technology .
6. Akhmedov , S. "Styrene: environmental consequences of a spill at sea." Eurasian Mathematical Theories and Computer Sciences 3.11 (2023): 14-20.
7. Akhmedov , BA, and SM Akhmedov . "Ecological fate of organic pollutants: Hexabromocyclododecane." Asian Journal Of Multidimensional Research 12.10 (2023): 11-20.
8. Akhmedov, B., and S. Akhmedov. "Green Renewable Energy: Chitosan Production and Contribution to Achieving the UN Sustainable Development Goals." E Conference Zone. 2023.
9. Vazira Usmonzhonovna Otakuzieva SELECTIVE EXTRACTION OF GOLD (III) WITH INERT ORGANIC SOLVENTS AND DETERMINATION OF ITS BY SPECTROPHOTOMETRIC AND ATOMIC ABSORPTION METHODS // Construction and education. 2023. No. 5-6. URL: <https://cyberleninka.ru/article/n/izbiratelnaya-ekstraktsiya-zolota-iii-inertnymi-organicheskimi-rastvoritelyami-i-opredelenie-ego-spektrofotometricheskim-i-atomno> (date of access: 14.10.2025). Vazira Usmonzhonovna Otakuzieva SELECTIVE EXTRACTION OF GOLD (III) BY INERT ORGANIC
10. Otakuzieva, V. (2023). SELECTIVE EXTRACTION OF GOLD (III) WITH INERT ORGANIC SOLVENTS AND DETERMINATION OF ITS BY SPECTROPHOTOMETRIC AND ATOMIC ABSORPTION METHODS. Central Asian Journal of Education and Innovation , 2 (12), 212–221. Retrieved from <https://in-academy.uz/index.php/cajei/article/view/24457>
11. <https://cyberleninka.ru/article/n/izbiratelnaya-ekstraktsiya-zolota-iii-inertnymi-organicheskimi-rastvoritelyami-i-opredelenie-ego-spektrofotometricheskim-i-atomno> SOLVENTS AND DETERMINATION OF ITS SPECTROPHOTOMETRIC AND ATOMIC ABSORPTION METHODS // Construction and education. 2023. No. 5-6. URL: <https://cyberleninka.ru/article/n/izbiratelnaya-ekstraktsiya-zolota-iii-inertnymi-organicheskimi-rastvoritelyami-i-opredelenie-ego-spektrofotometricheskim-i->
12. Minister Usmanjonovna Otakuziyeva gold inert organic solvents with selectivity to take and him/her spectrophotometric and atomic absorption methods with definition // construction and education 2023. #5-6. URL <https://cyberleninka.ru/article/n/izbiratelnaya-ekstraktsiya-zolota-iii-inertnymi-organicheskimi-rastvoritelyami-i-opredelenie-ego-spectrophotometricheskim-i-atomn>